KANYASHREE UNIVERSITY

M.Sc. 2nd Semester Examination-2024

Subject: Mathematics

Course- CC 9

Topology

Full Marks-40

Time-2.00 Hours

<u>GROUP - A</u>

(Answer **any four** of the following)

 $(5 \times 4 = 20)$

1 + 4

- 1. Define connected space. Prove that a topological space (X, τ) is connected if and only if no continuous function on X into the discrete two-point space $\{0,1\}$ is surjective. 1+4
- 2. When a Topological Space is said to be connected? Show that the image of a connected space under a continuous map is connected. 1+4
- 3. Let Y be a subspace of a topological space (X, τ) . Prove that if Y is open in (X, τ) then a subset G of Y is open in (Y, τ_Y) iff G is open in (X, τ) , the interior of a subset A of the open set Y in (Y, τ_Y) is the same as the interior of A in (X, τ) .
- 4. State Lebesgue number lemma. Show that compactness is a closed hereditary property.
- 5. Define Hausdorff space. Prove that if $f: (X, \tau) \to (Y, \tau_1)$ is injective and continuous, where (Y, τ_1) is Hausdorff, then (X, τ) is Hausdorff. 2+3
- 6. Prove that every second countable space is Lindelöf. Give an example with proper justification of a first countable space which is not second countable. 2+3

<u>GROUP – B</u>

(Answer any two of the following) $(10 \times 2=20)$

7. i) Define Path connected space. Show that every path connected space is connected. Is the converse true? Give proper justification.

ii) Prove that any closed subspace of a Lindelof space is Lindelof. 6+4

- 8. i) State Urysohn lemma for Topological space. Prove it in a Metric space.
 ii) Show that (0, 1) is not a compact set. (2+4) +4
- 9. i) State and prove Heine's continuity criterion.
 ii) Prove that for any subset A of a topological space (X, τ), A° = X (X A). 5+5