KANYASHREE UNIVERSITY

M.Sc. 2nd Semester Examination-2024

Subject: Mathematics

Course- CC 8

Functional Analysis

Full Marks-40

Time-2.00 Hours

<u>GROUP - A</u>

(Answer **any four** of the following)

 $(5 \times 4 = 20)$

- 1. Define equivalent norm in a normed linear space. Prove that any two norms in a finite dimensional normed linear space are equivalent. 1+4
- 2. Define isometric spaces. Show that every real linear space X with dimension n is isomorphic to the Euclidean n- space \mathbb{R}^n . 1+4
- 3. Given that x_0 be a nonzero vector in a normed linear space *X*. Show that there is an $f \in X^*$ such that ||f|| = 1 and $(x_0) = ||x_0||$. 5
- 4. Prove that for each bounded linear functional f on a Hilbert space H, there is a unique vector $z \in H$ such that $f(x) = (x, z) \forall x \in H$ and further ||f|| = ||z||. 5
- 5. Proved that a normed linear space X is a Banach space if and only if the set $S = \{x \in X : ||x|| = 1\}$ is complete.
- 6. Let (X, d) be a non-empty complete metric space. Show that every contraction mapping $T: (X, d) \rightarrow (X, d)$ has a unique fixed point. 5

<u>GROUP – B</u>

(Answer any two of the following)

 $(10 \times 2 = 20)$

ii) Show that the inner product space is a normed linear space under the norm $\|.\|$ defined by $\|x\| = \sqrt{(x,x)} \,\forall x \in X$.

iii) Let $T: X \to Y$ be a linear operator. Show that T^{-1} is a linear operator on T(x), provided T^{-1} exists. 5+3+2

2. i) State and prove open mapping theorem.

1. i) State and prove Riesz lemma.

ii) Prove that in any normed linear space *X*, all open balls are convex.

- iii) Give an example of a linear metric space which is not a normed linear space. 5+3+2
- 3. i) State and prove Bessel's inequality.

ii) Let $T: X \to Y$ be a bounded linear operator, where X and Y are normed linear spaces over the same scalar field. Show that $||T|| = \sup\{||Tx||: ||x|| \le 1\}$.

iii) Is the space C[a, b] a Hilbert space? Justify your answer. 4+4+2