KANYASHREE UNIVERSITY

M.Sc. 1st Semester Examination-2024

Subject: Mathematics

Course- CC 4

Ordinary Differential Equations and Special Functions

Full Marks-40

Time-2.00 Hours

<u>GROUP - A</u>

(Answer **any four** of the following)

 $(5 \times 4 = 20)$

- 1. State and prove the Abel's identity.
- 2. Find the general solution of the differential equation $(x^2 1)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2y = (x^2 1)^2$, given that y = x is a solution of the corresponding homogeneous equation.
- 3. State and prove Gronwall's Lemma.
- 4. Obtain a series solution of the differential equation $\frac{d^2w}{dz^2} 2z\frac{dw}{dz} + 2nw = 0$ in the neighbourhood of z = 0, where n is a constant.
- 5. If $P_n(z)$ is the Legendre polynomial of degree n, then show that $\int_{-1}^{1} P_n(z) P_m(z) dz = \frac{0 \text{ if } m \neq n}{\frac{2}{2n+1} \text{ if } m = n}$.
- 6. Prove that $2nJ_n(z) = z[J_{n-1}(z) + J_{n+1}(z)]$ where $J_n(z)$ is the Bessel's function of first kind of order n.

<u>GROUP – B</u>

(Answer **any two** of the following)

 $(10 \times 2 = 20)$

- 7. i) If y₁, y₂, ..., y_n are n solutions of y⁽ⁿ⁾ + p₁(x)y⁽ⁿ⁻¹⁾ + ... + p_n(x)y = 0 on an interval I, then prove that they are linearly independent there if and only if W(y₁, y₂, ..., y_n) ≠ 0 for all x in I.
 - ii) Using the method of variation of parameter, find a particular solution of the differential equation $\frac{d^2y}{dx^2} + 4y = \tan 2x$.

iii) Show that $L_n(0) = 1$ and $L'_n(0) = -n$ where $L_n(z)$ is the Laguerre polynomial of degree n. (5+3+2)

- 8. i) State and prove Sturm separation theorem.
 - ii) Using the Picard's method of successive approximations, find the third approximation

of the solution of the initial value problem $\frac{dy}{dx} = x + y^2$, y(0) = 0.

iii) Show that $H'_n(z) = 2nH_{n-1}(z)$ where $H_n(z)$ is the Hermite polynomial of degree n.

Page **1** of **2**

(4+3+3)

9. i) Prove that the eigen functions of the regular Sturm Liouville problem

$$\frac{d}{dx}\left[p(x)\frac{dy}{dx}\right] + \{q(x) + \delta r(x)\}y = 0$$

with boundary conditions

$$A_1 y(a) + B_1 y'(a) = 0$$

and
$$A_2y(b) + B_2y'(b) = 0$$

are orthogonal on the interval [a, b] with weight function r(x).

ii) Solve the following boundary value problem by constructing Green's function:

$$\frac{d^2u}{dx^2} + u = x, \ u(0) = 0, \ u(\pi/2) = 0.$$

iii) Show that Chebyshev polynomial $T_n(z)$ satisfies the second order differential equation

$$(1-z^2)\frac{d^2w}{dz^2} - z\frac{dw}{dz} + n^2w = 0.$$
(4+3+3)