KANYASHREE UNIVERSITY

M.Sc. 1st Semester Examination-2024

Subject: Mathematics

Course- CC 3

Linear Algebra

Full Marks-40

Time-2.00 Hours

GROUP - A

(Answer **any four** of the following)

 $(5 \times 4 = 20)$

- 1. Let $\alpha = (a_1, a_2, a_3)$, $\beta = (b_1, b_2, b_3) \in \mathbb{R}^3$ and $(\alpha, \beta) = |a_1b_1 + a_2b_2 + a_3b_3|$. Does (α, β) define a real inner product on \mathbb{R}^3 ? Justify your answer.
- 2. Let V be a Euclidean space and $\alpha, \beta \in V$. Then prove that $|(\alpha, \beta)| \le ||\alpha|| ||\beta||$, with equality if and only if α and β are linearly dependent.
- 3. Let $(\alpha_1, \alpha_2, \alpha_3), (\beta_1, \beta_2)$ be ordered bases of the real vector spaces V and W respectively. A linear mapping $T: V \to W$ maps the basis vectors as $T(\alpha_1) = \beta_1 + \beta_2$, $T(\alpha_2) = 3\beta_1 \beta_2$ and $T(\alpha_3) = \beta_1 + 3\beta_2$. Find the matrix of T relative to the ordered bases $(\alpha_1, \alpha_2, \alpha_3)$ of V and (β_1, β_2) of W.
- 4. State and prove Sylvester's Law of Inertia.
- 5. Suppose V is a real vector space and V_C be the complexification of V. Then prove that the dimension of V_C (as a complex vector space) is same as the dimension of V (as a real vector space).
- 6. Prove that minimal polynomial of a square matrix is unique.

<u>GROUP – B</u>

(Answer **any two** of the following) $(10 \times 2=20)$

- 7. i) Let V be a finite-dimensional inner product space. Then show that V has an orthogonal basis.
 - ii) Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and then an orthonormal basis for the subspace U of \mathbb{R}^4 spanned by $v_1 = (1,1,1,1), v_2 = (1,2,4,5), v_3 = (1,-3,-4,-2).$ (5+5)
- 8. i) Define idempotent linear operator. Give an example of a linear operator T having eigen values 0 and 1 but T is not idempotent.
 - ii) Give an example of a linear operator $T : R^3 \to R^3$ such that $T \neq 0$, $T^2 \neq 0$ but $T^3 = 0$.
 - iii) Does there exist a linear mapping $f : \mathbb{R}^3 \to \mathbb{R}^3$ with the property that f(0,1, 1) = (3, 1, -2), f(1, 0, 1) = (4, -1, 1), f(1, 1, 0) = (-3, 2, 1) and f(1, 1, 1) = (3, 4, 2)? (4+3+3)
- 9. i) Find the dual basis of the basis $B = \{(1, -1, 3), (0, 1, -1), (0, 3, -2)\}$ of R^3 .
 - ii) Determine the range of values of λ for which the quadratic form

$$\lambda(x^2 + y^2 + z^2) + 2(xy - yz + zx)$$

is positive definite.

(5+5)